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LETTER TO THE EDITOR 

Stochastic spatial behaviour in deterministic pattern formation 
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Institute for Technical Physics. Budapest, PO Box 76, 1325 Hungary 

Received 8 January 1990 

Abstract. We introduce a new approach to the analysis of growing unstable interfaces in 
order to characterise the degree of their randomness. Highly ramified viscous fingering 
patterns are digitised and the related surface curvature data are evaluated using techniques 
common in the investigations of dynamical systems. Our results for the associated correla- 
tion dimension indicate that the experimentally observed deterministic patterns correspond 
to a spatial behaviour which is more complex than a low-dimensional chaotic geometry. 

Far from equilibrium growth processes [ 1-31 such as aggregation [4,5], electrodeposi- 
tion [6], solidification [7], dielectric breakdown [8] and viscous fingering [9-111 
typically lead to patterns having an apparently random, fractal [12, 131 structure. In 
most cases this is so even for phenomena where the development of the unstable 
interface is described by deterministic equations [ 141. This fact raises the intriguing 
question of analogies between temporal chaos and spatial disorder; a question which 
has been known for some time, but has not been addressed in a systematic way. A 
simple method which relates the two kinds of phenomena is expected to contribute to 
our insight into growth processes. 

The complex behaviour of dynamical systems can be described by attractors [ 151 
which are objects embedded in a relatively low-dimensional phase and have a fractional 
dimension [12,16,17]. From the experimental point of view, the complexity of the 
temporal behaviour is usually examined using the measured time series of a scalar 
quantity. In particular, one can determine the power spectrum of the signal and 
construct various plots from the time-delayed data [18]. In the case of delaying m 
times, one obtains a set of points in the d,-dimensional space whose correlation 
dimension [ 171 is an important characteristic of the dynamics. 

The main questions addressed in this letter are the following. How can one establish 
an analogy between the experimentally seen complex behaviours in time and space? 
What is the degree ofrandomness of patterns growing deterministically? In order to 
treat the above problems we shall use an approach which relates patterns to time series. 
This method is expected to be useful since during the past decade powerful methods 
have been elaborated for the treatment of chaotic signals observed as a function of 
time in chaotic systems. 

Our final goal is to investigate the above questions in the context of interfacial 
growth under essentially deterministic conditions. This can be carried out by charac- 
terising the geometry of disordered patterns evolving in two-phase fluid flows. Fluid 
flows are known to exhibit several kinds of instabilities which are described by the 
Navier-Stokes equation. When one is interested in the dynamic behaviour of the flows, 
one can use a detector at a fixed point in space and record the velocity-dependent 
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signal as a function of time. Above a critical value of the Reynolds number the signal 
becomes stochastic indicating the onset of chaos. 

Let us develop a similar framework for the investigation of viscous fingering patterns 
which are also determined by the Navier-Stokes equation with the appropriate boun- 
dary conditions. The phenomenon of viscous fingering takes place when a less viscous 
fluid is injected into a more viscous one under circumstances leading to a fingered 
interface. The cell consists of two transparent plates of linear size w separated by a 
relatively small distance b (typical sizes are in the region w - 30 cm and b - 1 mm). 
The viscous fluids are placed between the plates and pressure is applied at the centre 
of the upper plate (radial cell). Under such conditions the pressure distribution in the 
incompressible fluids is determined by the Laplace equation [9] 

v2p = 0. (1) 

The traditional experiment is carried out using two immiscible, Newtonian fluids 
with a high viscosity ratio. In the radial Hele-Shaw cell no steady-state fingers can 
develop because of the Mullins-Sekerka instability [ 191 which leads to the growth of 
disordered interfaces shown in figure l ( a )  even for low Reynolds numbers. 
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Figure 1. ( a )  Interface of a representative viscous fingering pattern obtained in the radial 
Hele-Shaw cell containing glycerin for relatively large pressure ,of the injected air. ( b )  
Part of the long series of curvature values (5000 out of 38 200) determined for pattern ( a )  
as a function of the arc length. 

To characterise the patterns in the thermodynamic limit [20] we determine K ( S )  

which is the local curvature of the interface as a function of the arc length s (distance 
measured along the surface). Higher-order derivatives could also be used, but the 
slope of the experimental curves would diverge at many places. In the following, K ( S )  

will be used as an analogue ofthe time series measured in the experiments on dynamical 
systems. 

This approach allows for the following classification of the spatial configurations 
arising from a simple, but irregular, initial interface. 

(i)  If the less viscous fluid is drained out from the cell (suction), the interface is 
stable and the resulting pattern is a circle. Let us now construct a plot of K( s + As) 
against K ( S )  in a manner similar to that used in the theory of chaos to find attractors 
from a single time series. For a circle we obtain a single point in analogy with the 
fixed points defined for dynamical systems. 

(ii) Injecting the less viscous fluid into a system with anisotropy the situation 
changes qualitatively [21,22]. In this case nearly periodic, dendritic structures are 
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observed in the vicinity of the tips which are stabilised by the anisotropy. This behaviour 
in a crude approximation corresponds to a limit cycle in the K (  s + As) against K (  s )  plot. 

(ii) Injecting the less viscous fluid into a cell with no anisotropy one obtains patterns 
without any apparent symmetry. Accordingly, the data seem to be randomly scattered 
in the related plot of K values. For recursively constructed fractal curves such as the 
Koch curve (with a lower cut-off length scale or rounded corners) the curvatures 
represent a series of numbers (symbols) taking on a few values only and accordingly, 
the attractor is trivial. This is a qualitatively different case, and it could be treated in 
a similar framework using an analogy with symbol sequence analysis. 

The fractal dimension of patterns and that of the attractor corresponding to the 
curvature series are not related, these two quantities represent different characteristics 
of the interfaces. Depending on the level of their randomness, patterns having the 
same fractal dimension D may have attractors of very different dimensions in the 
length-shifted phase space (see the above comment on the Koch curve), while the 
reverse statement is expected to be valid as well. In this sense K ( S )  discriminates 
differently created curves in the same manner as D. To get additional information 
about our viscous fingering patterns the fractal dimension of the interface has been 
independently determined using the standard box counting method. The result is 
D = 1.64 and the details of the related calculations will be published separately [23]. 

Of course, the statement relating to the deterministic nature of viscous fingering is 
only valid if the flow is not dominated by the small random disturbances during the 
experiments. We carried out the experiments using high quality float glass plates whose 
irregularities were smaller than 0.01% of the distance between the plates. Gaseous 
nitrogen was injected, from a large buffer of constant pressure, into glycerin in a regime 
corresponding to laminar flow. Under such conditions, but in somewhat different 
geometry, deterministically behaving patterns have been observed in several experi- 
ments on viscous fingering C223. As we shall see later, our data (for the power spectrum 
and the correlation integral) indicate that the disordered fingering patterns are essen- 
tially not completely random. A typical pattern is shown in figure l ( a ) .  

In order to extract quantitative information from the experimental patterns the 
local curvature, K ( s ) ,  was determined as a function of the arc length at each pixel 
point of the digitised image. We achieved a resolution of 1400 x 1400 pixels by digitising 
parts of the interface separately. The K values were obtained by fitting a third degree 
polynomial to the digitised interface optimising the length of the interval on which 
the fitting was carried out. We tested the accuracy of our method by calculating K for 
circles of various radii and found that down to radii corresponding to about 50 pixels, 
the systematic error is within 7%. Then the obtained set of approximately 40 000 data 
was treated as a ‘time series’. Figure l ( b )  shows part of the long series of data for 
K (s ) .  The tips of the fingers and the relatively sharp corners at the inner ends of fjords 
appear as peaks distributed in an apparently random manner. Accordingly, the power 
spectrum of our data has no well defined, singular peaks which would correspond to 
periodic behaviour. Instead, its decay is approximately exponential for intermediate 
values of the frequency indicating the deterministic nature of the interface ([24] and 
references therein). 

In search for an underlying structure behind the seemingly stochastic behaviour 
one can apply a technique analogous to the construction of ‘time-delayed’ plots. In 
our case this means plotting the data as points in a &-dimensional ‘phase’ space using 
the curvature values obtained for the arc lengths s, s + As, . . . , s + ( d ,  - 1 ) A s  as coordin- 
ates. (In the d ,  = 1 case the correlations are calculated between the scalar curvature 
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values distributed on an interval.) According to our results for d ,  = 2 and 3, the data 
points K . ~  = { K ( s ) ,  . . . , K [ s + ( d m  - l)As]} are scattered randomly in such length-shifted 
plots. The distribution of points shows no signs of the presence of an attractor 
corresponding to a low-dimensional spatial chaos. 

The degree of randomness can also be examined by estimating the correlation 
dimension D2 associated with the length shifted set of K, data. As in the theory of 
dynamical systems, we expect that with growing d ,  the correlation dimension converges 
to a finite value if the behaviour of the system can be described in terms of a 
finite-dimensional chaos. The dimension at which this convergence is completed is 
called the embedding dimension ( d e ) .  For a completely random set of points, i.e. for 
points produced by a random number generator, D2 = d ,  for all d,, while, in turn, 
D2 < d ,  indicates an underlying structure in the data. To determine D2 one calculates 
the correlation function c( r )  from the expression [ 181 

1 
n 

c( I )  = 7 [number of pairs of points (s, s') with I K , ~  - K,,( < r ]  (2)  

and uses the relation 

c( r )  - r D 2  (3)  

where r is supposed to be small. 
Using the curvature data obtained for the pattern in figure l ( a )  we determined 

c ( r )  for various d ,  and As. A typical set of curves is displayed in figure 2 .  As for 
other values of As, no well defined, unique slope can be observed in the log-log plots 
of c ( r )  (although the slopes of the curves do not seem to saturate for d ,  10, their 
values appear to be smaller than the embedding dimension). One of the conclusions 
one can draw from this figure is that the structure of our data is very similar to that 
of a completely random set of points. This is a rather unexpected result because of 
the simple structure of the equations describing the development of the interface. 

In addition, we have also analysed our data using the following method. We have 
determined the quantity 6 (  r )  = In cR(r) -In c( r ) ,  where In cR denotes the correlation 
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Figure 2. The correlation integral c ( r )  for the shift parameter value As  = 10 and for various 
trial dimensions d,. The d, = 1 case corresponds to the correlations between the unshifted 
data. 
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integral corresponding to the data set obtained by mixing our original data in a random 
manner. Our results for 6 ( r )  and its derivative are shown in figure 3. This figure 
indicates that S ( r )  scales in a non-trivial way. For completely random original data 
6 ( r )  would remain approximately zero in the scaling region, while in the presence of 
a low-dimensional attractor the slopes of the curves would change with the trial 
embedding dimension as d,,, - D2 for d ,  L d e .  The inset in figure 3 shows that none 
of these seems to be the case, although our data are quite scattered for obtaining well 
defined estimates for the local slopes. 

The reason for the stochastic behaviour investigated in this letter is the instability 
of the interface: perturbations beyond a surface tension-dependent wavelength grow 
indefinitely. These perturbations are present in the initial condition, i.e. the starting 
shape of the interface is never perfectly symmetric. We suggest that the nonlinear 
mixing of the many Fourier modes of the initial interface produces high-dimensional 
behaviour. In the absence of stabilising effects (e.g. anisotropy), there is no mechanism 
which would drive the system into any of the regular shapes. Note that in systems 
with low-dimensional temporal chaos the onset of chaotic behaviour usually takes 
place as one of the parameters of the system is changed. In our case the role of this 
parameter is possibly played by the anisotropy. 

In conclusion, applying the techniques widely used for the description of temporal 
chaos, we have demonstrated the non-existence of an attractor having a simple structure 
associated with the spatial behaviour of viscous fingering patterns. This fact indicates 
that in spite of their deterministic origin, growing Laplacian interfaces cannot be 
described in terms of low-dimensional chaos; instead, they have been found to corre- 
spond to a stochastic behaviour of higher degree in space. Finally, the approach 
presented in this letter can be applied to many other kinds of pattern forming systems 
and to the characterisation of interfacial structures in general. For instance, implement- 
ing the existing algorithms [ 2 5 ]  for dynamical systems, it should be straightforward 
to calculate the related Lyapunov exponents for patterns corresponding to low- 
dimensional chaos. 
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Figure 3. The difference S ( r )  for As = 10 between the correlation integral c R ( r )  calculated 
for the data set obtained by randomly mixing the original curvature values and the 
correlation integral c ( r )  corresponding tci the original K ( S )  series. The inset shows the 
derivatives obtained for the plots displayed in the main part of the figure. 
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